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The generalized Trotter formula is used to derive two different classical repre- 
sentations of the partition function of a one-dimensional fermion model. Short- 
chain calculations are used to study the corresponding approximants for the 
energy and specific heat. A Monte Carlo technique has been used to calculate 
the temperature-dependent properties of a chain of 64 sites. 
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1. INTRODUCTION 

Recently Suzuki (]) demonstrated that the generalized Trotter formula (2'3) 
can be used to map the partition function of a d-dimensional quantum 
spin-l/2 model onto the partition function of a (d + 1)-dimensional Ising 
model with four-spin interactions, and similar mappings have been derived 
for fermion models and more complicated spin systems. (4) This approach 
to quantum statistical mechanics is very appealing because, in principle, it 
is possible to calculate the temperature-dependent properties without diago- 
nalizing the full Hamiltonian. (5) In practice, the relevant quantities of the 
quantum sy'stem might be obtained by a Monte Carlo simulation of the 
classical model. (5) Because there is no unique classical representation for a 
given quantum Hamiltonian, it is necessary to study the convergence 
properties of different representations by means of exact calculations for 
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small systems before one adds the complication of the Monte Carlo 
procedure. 

In this paper we carry out such a program for the one-dimensional 
spinless fermion lattice model described by the Hamiltonian 

% -- %0 + %1 (1.1a) 

M 
+ 

%o = - t  ~ ct + ct+ 1 + ct+ l Cl, Cl = Cl+ m' [ > 0 (1. l b) 
/=1  

M M 

%1 t.) E + + ~-~ = c t c lcl+lct+ l v ~ ntnt+ 1 (1.1c) 
l = l  l = l  

The operator ct + creates a fermion at site l and n l denotes the number 
operator at site I. The energy associated with the hopping motion of the 
particles is given by %0 and the interaction between nearest neighbors is 
determined by %1. It is well known that Hamiltonian (1.1) is equivalent to 
the spin-l /2 Ising-Heisenberg chain if M--> oo. (6) The model is also a 
familiar starting point in the description of some phenomena observed in 
charge-transfer salts. (7'8) 

In order to calculate the partition function of model (1.1) we use the 
Trotter formula (z3) for the bounded operators A k, 

n [ 
exp( A,) : m  lim exp( ) �9 �9 �9 exp(A' ) (1.2) 

for two different decompositions of Hamiltonian (1.1). The basic idea of 
using (1.2) is to calculate temperature-dependent quantities for given m and 
to study the convergence of the results as m increases. It is the purpose of 
this work to show that this new computational technique can be very useful 
for the numerical determination of thermodynamic properties of quantum 
systems. 

In Sections 2 and 3, we derive the relevant formula for the energy, 
specific heat, and density-density correlation functions using two different 
classical representations. Exact calculations for short chains for several 
values of m will be presented in Section 4, and the results will be compared 
with the solution obtained by diagonalizing the full Hamiltonian. In Sec- 
tion 5, we show how the standard Monte Carlo method should be modified 
in order to be applicable to the quantum case and we present results for 
long chains (M = 64). The conclusions of our work are summarized in 
Section 6. 
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. 

Z = lim Z~ l) 
m - - ) ~  

Z~ l) = Tr(e - B%/'~e - ~ ' / m  )m 

= ~, (e~,le-e%~ 

F I R S T  F O R M U L A T I O N  

Taking n = 1, A o = - /3%0,  and Aj = - /3%1 in Eq. (1.2) we have 

(2.1a) 

(2.1b) 

• . . .  (ep, , , le-e%/ ' l~ , ) (~, le-B%'/m]@,)  (2.1c) 

where q~i = qJ i (x~ j . . .  XN,,) = Cs �9 �9 �9 C~.,]0), N being the number of parti- 
cles. We have used the fact that ~i is an eigenfunction of %v As %o can be 
diagonalized by Fourier transformation, the matrix elements (@] e x p ( - / 3 .  
%o/m)  I'#i + l) can be evaluated explicitly, and we obtain 

Z~ ') = E ~] O({ x,j}, {Pj } ) s ign(P1 . - -  Py) (2.2a) 
{~) {x~,i } 

p({xlj}, (Pj }) -- 1- IJ (2 t f l * , y , j ) exp  --Vfl*2~(x,.Fx,..~)moaM,, 
j = l l = l  1' ~ " 

(2.2b) 
where 

and 

M 
1 2rrkx 

----M-- exp(a   cos 
k=l 

(2.2c) 

Yz,j = xlj  - xG,l,j+ l (2.2d) 

The position of the (l, j ) th  particle on the two-dimensional lattice has been 
denoted by x t j =  Xt+Mj = XCj+m, f l * =  f l / m  and Pj is a permutation 
operator acting on the set { 1 . . . . .  N }. 

In Eq. (2.2) the sum over {xtj } has to be taken such that there is at 
most one particle at a given site. By a change of summation variables, Eq. 
(2.2) can be written as 

Z{m 1) = ~ ~s O({x t , j } ,P)s ign(P)  (2.3a) 
e (x,,j } 

ie I N 
= IX J(2 t f i* ,  x,,j - x,j+ I) 

j = l l = l  

X exp[  -- v/3 * E 8(x,J- x,'~) m~ M,' ] 1 ,  (2.3b) 
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where in this case Xt, m+ l = Xpl, l. Thus we have shown that Z~ 0 is a genuine 
discrete version of Feynman's path-integral representation for the partition 
function of a fermion model. (9) We have found Eq. (2.2) to be more 
convenient for numerical applications because permutation operators ap- 
pear in a more symmetric manner. 

The energy can be obtained from 

0 in Zm(1) (2.4a) 

_ t Z~ ') ~,, ~ O((Xl,j},{Pa})sign(P,... P,~)e,,,(3) (2.4b) 
{Pj) {XI,j} 

N [ J(2t f l* ,y l j -1)+J(2t f l* ,y , , j+l)  
e r a ( B ) =  • ' / : ,  1:, m f(27ff-*; yT,  j) 

v t~ ' ] (2.4c) m , 6(x,.j -- xt,,j)mod M, l 

The specific heat is given by 

C~,) = _ f12 + E~,) (2.5a) 

=f12[ 1 ~ ~] p({x1+),{P j } ) s ign (P , . - .P , . )  
{6} (x,j) 

x [{e,n(fl)} 2 + e ' ( B ) l -  { E~'~} 2] (2.5b) 

where 

\ ] ~ ~2[ N J(2tfl*,Yl,j- 2) + J(2t3*,Yl,j+ 2) 
e~( t~) = 2raN + ~ 2 JC2tfl*, y,,j) 

j = l  l=1 

_ [ J(2tfl *, Yt.j J-(27fl-~tJ)- t) + J(Ztfl *, Y__zj + 1) 12 } (2.5c) 

Another interesting quantity to sample is the static structure factor S(q) 
which is the Fourier transform of the density-density correlation function, 

1 s s O({x,a},{pj})sign(P.. .pm) (nini+k)- mM {ej} {x,a) 

M M 

X k s s ~,x,.s-xv.,lmodM,k (2.6) 
j = l  l = 1  l " = 1  
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We close this section with some general remarks. An important feature of 
this formulation is that (9) 

Z})  ) >1 Z(22L >/ Z (2.7) 

which implies that we obtain exact lower bounds for the free energy for 
certain choices of m. It is trivial to verify that Zm (0 = Z if t" v = 0. Because 
we have used a representation for which %1 is diagonal, it is easy to include 
more-distant interactions in this formulation. It is also straightforward to 
derive expressions for a two- or three-dimensional lattice. 

3. SECOND FORMULATION 

Here we take in Eq. (1.2) n = M and 

A k = f l t (c~cg+ 1 + e f f+lek) -  flvnknk+ t (3.1) 

The two-fermion Hamiltonian (3.1) can be diagonalized, and because of the 
local character of the decomposition, the approximant Zm (2) takes the form 

Z~ (2) = ~] t~((n,,j)) (3.2a) 
( nLj } 

2 m + l  M - - 1  

/~((nl,j})= H H T(nLj+t,nt+l,j;nl,j+z,nl+lj+l) 
j= l  t=l 

- -  n - ~ N - 1  • (1 - 2[nM, j M,J'+ 1 ] (3,2b) 

where ntj = nl+M, j = ntj+2m+ I = 1 if the site ( l , j )  of the two-dimensional 
lattice is occupied, otherwise nl, j = nl+Mr = nl,j+Zm+] = 0. The second fac- 
tor in the product (3.2b) would not be present if we had not chosen 
periodic boundary conditions. If we put a -- 2n 1 + n 2 + 1 and fi = 2n~ + 

t n 2 + 1 we can write T in a matrix notation 

T(n, ,n2;  n],n'2) ~ T ~  (3.3a) 

I i  0 0 0 
0 cosh(tfl*) sinh(tfi*) 0 (3.3b) 

[ T~]  = sinh(tfi*) cosh(tfl*) 0 

0 0 e -~B* 

In the special case m = 1, it is possible to calculate the sum (3.2) analyti- 
cally (see Appendix). We now proceed as in the previous section and obtain 
the following expressions for the energy, specific heat, and density 'density 



736 De Raedt and Lagendijk 

correlation functions: 

E,(~ 2) = - ,_1(2----- S ~,  p((nl,j))~m(fl) (3.4a) 
LA, (ntj) 

M m~l (3//afl) T(nt,j+ ,, n,+ ,,j; ntg+2, n,+ 1,j+ l) 
em( f l  ) = E ~-~ (3.4b) 

t=l j= l  T(nt,j+l, nt+~d;nl,j+2,nt+l,j+l) 

fl 1~(2) {era( + ] { Era(2)}2] 

(3.4c) 

(nini+k) _ 1 2 p({nl,j}) E E nl,jn(l'+k)modM,j ( 3 . 4 d )  
mM (.~} j = l  1=1 l '=1  

Note that locality is an essential ingredient of this approach, and therefore 
it is difficult to include more-distant interactions in this formulation. A 
general feature of both formulations is that it is difficult to calculate 
quantities which cannot be expressed as a combination of derivatives of the 
partition function or which are not diagonal in the real-space basis. 

Finally we want to mention that it is also possible to improve the 
approximation by decoupling the Hamiltonian in cells of three, four, or 
more sites. In the m -- 1 case, it is then possible to sum over all sites within 
each cell. This approach has some nice properties but it is outside the scope 
of this paper. 

4. SHORT CHAINS 

For short chains (M < 8) and small m, it is possible to sum over all 
possible configurations (and permutations) exactly. In general, this has to 
be done numerically but it is not difficult to calculate the relevant quanti- 
fies to very high precision. In this section we discuss the convergence of the 
approximants, introduced in the previous sections, as a function of m and 
we compare the results with those obtained by diagonalizing the full 
Hamiltonian (1.1). 

For all our numerical calculations we have taken t = 1, v = 2 and a 
half-filled band or N = M/2.  For this particular choice of model parame- 
ters the ground-state of model (I) corresponds to the ground state of the 
antiferromagnetic spin-1//2 Heisenberg chain for which the exact ground- 
state energy for M ~  oo is known. (1~ Furthermore the interaction %~ and 
the free part %o are equally important, so that we are testing the method for 
the most difficult case. 
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Table I. Exact Results for the Energy (Specific Heat) per Site for Two 
Particles and Four Sites Obtained from Eqs. (2,3)-(2.5). The Results for 

m = ~ are Obtained by Diagonalizing the Full Hamiltonian 

m /3=0.3 /3=0.s /3=1 /3=2 

I 0.0447(0.0875) - 0.1356(0.2017) - 0.3941(0.2716) - 0.4900(0.0863) 
2 0.0531(0.0806) - 0.1059(6.1698) - 0.3149(0.2277) - 0.4316(0.2599) 
3 0.0547(0.0793) - 0.0997(0.1622) - 0.2900(0.1893) - 0.3826(0.2359) 
4 0.0553(0.0788) - 0.0975(0,1595) - 0.2802(0.1716) - 0.3552(0.1775) 
5 0.0555(0.0786) - 0.0964(0.1582) - 0.2754(0.1626) - 0.3399(0.1336) 
6 0.0557(0.0785) - 0.0959(0.1574) - 0.2728(0.1574) - 0,3308(0,1040) 

0.0560(0.0782) - 0.0946(0.1558) - 0.2666(0.1451) - 0.3076(0.0187) 

In  Tables  I and  II we present some typical results for the first 

approach.  For  high temperatures (small /3) ,  both  the specific heat  and  the 
energy rapidly converge to the exact result ( m ~  m). This could be ex- 

pected because Eq. (2.1) becomes exact in the limit f i lm  ~ O. At very low 
temperatures  ( f l  = 2) we still have reasonable  convergence.  One might 
argue that  fi = 2 does no t  correspond to a very low temperature,  bu t  if we 

compare  the ground-s ta te  energy of a chain of for example 4 sites ( E 0 =  

- 0 . 3 0 9 0 )  with the energy for fl = 2 (E  = - 0 . 3 0 7 6 )  it is clear that  we are in 
the very low temperature  regime indeed. 

The  corresponding results for the real-space decomposi t ion are given 

in Tables  III  and  IV. In  general, the results converge slower to the exact 

values than  in the other approach.  At  low temperatures  the results for the 

specific heat  do no t  converge at all for the values of m we could do in our  
calculation.  We have found  that  the results for the correlat ion funct ions  do 

not  differ much,  bu t  the first approach does give slightly better  results. For  

comparison,  we have also inc luded the exact (m = 1, M ~ m)  results of the 

Table II. Exact Results for the Energy (Specific Heat) per Site for Four 
Particles and Eight Sites Obtained from Eqs, (2.3)-(2,5). The Results for 

m = oo are Obtained by Dlagonalizing the Full Hamiltonian 

m /3=0.3 /3=0.5 f l = l  /3=2 

1 0.1579(0.0856) - 0.0286(0.2233) - 0.3730(0.4679) - 0.5765(0.2333) 
2 0.1627(0.0815) - 0.0091(0.1986) - 0.2954(0.3679) - 0.4796(0.3765) 
3 0.1617(0.0806) - 0.0051(0.1930) - 0.2744(0.3283) - 0.4272(0.2951) 

0.1644(0.0800) - 0.0017(0.1883) - 0.2551(0.2865) - 0.3595(0.0892) 
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Table I!!. Exact Results for the Energy (Specific Heat) per Site for Two 
Particles and Four Sites Obtained from Eqs. (3.2)-(3.4). The Results for 

m = oo are Obtained by Diagonalizing the Full Hamiltonian. The Rigorous 
m = 1, M->  ~ Results Can be Found in the Appendix 

m /3=0.3 /3=0.5 /3= 1 /3=2  

1 0.0322(0.0992) -0.1942(0.2847) -0.6717(0.6830) -0.9615(0.3220) 
2 0.0504(0.0830) -0.1163(0.1820) -0.3479(0.2613) -0.5775(1.4282) 
3 0.0535(0.0803) - 0.1039(0.1668) - 0.2974(0.1737) - 0.2852(-0.8200) 
4 0.0546(0.0793) - 0.0998(0.1619) - 0.2828(0.1566) - 0.2718(-0.6796) 
5 0.0551(0.0789) - 0.0979(0.1596) - 0.2767(0.1512) - 0.2814(-0.4268) 
6 0.0554(0.0787) - 0.0969(0.1585) - 0.2734(0.1489) - 0.2889(-0.2795) 

oo 0.0560(0.0782) -0.0946(0.1558) -0.2666(0.1451) -0.3076(0.0187) 

l(M~oc) 0.2443(0.0846) 0.0493(0.2494) -0.4225(0.8215) -0.8958(0.7900) 
I 

A p p e n d i x  in T a b l e s  I I I  a n d  IV. Thus ,  f r o m  a theore t i ca l  p o i n t  of  view,  we  

w o u l d  p re fe r  to app ly  the  M o n t e  C a r l o  t e c h n i q u e  to the  first  f o r m u l a t i o n .  I t  

is a m u s i n g  to p o i n t  o u t  tha t  for  the  v e r y  shor t  chains ,  for  w h i c h  the  

d i a g o n a l i z a t i o n  of  the  H a m i l t o n i a n  is poss ib le ,  the  resul ts  in o u r  tables  for  

the  m a x i m u m  va lues  of  m t o o k  a b o u t  severa l  mi l l i on  t imes  m o r e  c o m p u t e r  

t ime  t h a n  the  e x a c t - d i a g o n a l i z a t i o n  results ,  

5. M O N T E  C A R L O  C A L C U L A T I O N S  

I f  o n e  wan t s  to s tudy  the  p rope r t i e s  of  l o n g  chains ,  i t  is n o t  poss ib le  to 

d i a g o n a l i z e  the  ful l  H a m i l t o n i a n  or  to p e r f o r m  an  exac t  s u m m a t i o n  o v e r  all  

Table IV. Exact Results for the Energy (Specific Heat) per Site for Four 
Particles and Eight Sites Obtained from Eqs. (3.2)-(3.4). The Results for 
m = ~ are Obtained by Diagonalizing the Full Hamiltonian. The Rigorous 

m = 1, M--> co Results Can be Found in the Appendix 

m fl=0.3  f l=0.5  f l =  1 f l = 2  

1 0.1553(0.0904) - 0.0544(0.2655) - 0.5591(0.8647) - 0.9565(0.3986) 
2 0.1616(0.0826) - 0.0155(0.2091) - 0.3453(0.4937) - 0.6762(0.9462) 
3 0.1631(0.0812) - 0.0079(0.1976) - 0.2944(0.3715) - 0.4678(0.2884) 

0.1644(0.0800) - 0.0017(0.1883) - 0.2551(0.2865) - 0.3595(0.0892) 

I(M---~ oo) 0.2443(0.0846) 0.0493(0.2494) - 0.4225(0.8215) - 0.8958(0.7900) 
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possible configurations. Therefore, we will use a Monte Carlo technique to 
obtain the relevant quantities. At first sight, it seems very plausible that this 
can be done because there is the general statement that the partition 
function of a d-dimensional quantum model is equivalent to the partition 
function of a (d + 1)-dimensional classical model. (~ However, for practical 
applications, it is necessary that each contribution to the classical partition 
function is positive. (12) Otherwise, the transition probability for the Monte 
Carlo scheme would be negative. In general, this condition is only satisfied 
for a small class of models (such as ferromagnets). In this section, we 
slightly reformulate the original problem such that we can still apply the 
Monte Carlo method. 

In the previous section, we have demonstrated that from a theoretical 
point of view, the first approach, in which the Hamiltonian is partitioned in 
kinetic and potential energy, is better than the second approach, in which 
the Hamiltonian is partitioned in real-space parts, and we now argue that 
the first formulation is also considerably simpler for practical applications. 
Examining matrix (3.3b) we see that a large number of its elements are 
zero 3 and consequently a large number of configurations do not contribute 
to the partition function (3.2). As it would be very inefficient to generate 
these configurations, an additional algorithm for finding nonzero configura- 
tions is required. In practice this means that one has to move several 
particles at the same time. Although several efficient algorithms can be 
derived, the main problem is that this algorithm should be used in each 
Monte Carlo step. In the first formulation, there are no zero contributions 
to the partition function, and therefore it is possible to move one particle at 
a time. This simplifies programming and decreases computation time 
considerably. 

These considerations have led us to the conclusion that we should start 
from the "path-integral approach" for the actual simulation. We now 
present the essential steps of our calculation. (13) In order to have a positive 
transition probability we define the following average of a quantity A : 

<<A >> = TrpA/Tro (5.1) 

where we used a shorthand notation for p = p({xl,j}, {Pj)) and Tr denotes 
the sum over all possible (xt,j) and (Pj). As in Monte Carlo calculations of 
real classical models, the partition function itself is not of direct interest. 
The energy, specific heat, and correlation functions can be expressed 

3 We have chosen the model parameters such that each element of T is not negative. However, 
there are still negative contributions to Zm (2) because of periodic boundary conditions. 
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entirely in terms of the averages defined in Eq. (5.1): 

Em (') = << sign(Pl " " "Pm )em( t ~ ) >>/<< sign(Pl " " " P,. ) >> 

Cm (1) =/32[<< sign(P1 . . -  P m ) [ ( e m ( B ) } 2 +  e'(/3)]>> 

• {<<s ign(P1 . . .  Pro)>>) -1-  (E(1)}21 

(5.2a) 

(5.2b) 

(nini+1,) _ 1 ~., ~ ,  <<sign(P1..  . pm)d(x,j_x,v)modM,k>> 
m M  j=~ l=1 t'=l 

X << sign(P1 �9 �9 �9 Pro) >>- 1 (5.2c) 

Because 0 is positive [see Eqs. (2.2b) and (2.2c)], we only have to generate a 
Markov chain of configurations such that the transition probability, p, is 
given by p =o (new configuration)/0(old configuration.(12) Thus we still use 
the standard Monte Carlo method to calculate the averages as defined in 
Eq. (5.1) and we then use Eqs. (5.2) to obtain the thermodynamic properties 
of the fermion model. It is interesting to note that Tr0  is the partition 
function of a boson model with a hard-core interaction that prevents two or 
more particles from occupying the same site. 

The Markov chain is generated as follows. Select a particle (l, j )  
randomly and move it one position to the left (right) with probability 1/2. 
If the new position is already occupied by another particle, move that 
particle one position to the right (left), and modify the corresponding 
permutations accordingly. Calculate the transition probability p and accept 
the new configuration if p/> r (0 < r < 1, r being a random number). 
Instead of moving a particle, one might also change a permutation (chosen 
at random) and then calculate the transition probability. This has been 
built in in our program, but we have found that this has a negligible effect 
on the results. 

We now discuss the results of a simulation of a system of 32 particles 
on 64 sites. In each run, 2000 samples were taken and the first 4,000,000 
Monte Carlo steps were discarded by the sampling procedure. For each 
temperature we took the average of the results of three independent runs. 
Instead of varying m for each temperature, we have taken m such that 
rn /B  -- 16 (except for 3 = 2, where we also have taken m = 36), because we 
know from our previous calculation (13) for a chain of 32 sites that for this 
choice of m the convergence to the exact values is already very good. In 
Table V, we present the data for the energy and specific heat per site for 
the fermion model (denoted by E F and Cv) and for the associated boson 
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Table V. Monte Carlo Results for the Energy and Specific Heat of the 
Fermion Model (E F, CF) and the Associated Boson Model (EB, C8) for a 

System of 32 Particles and 64 Sites 

fl=0.5 f l= l  fl=1.5 fl=2 fl=2(m=36) 

E F 0.075 + 0.008 

E B 0.035 + 0.008 

-0.192_+0.009 - 0 . 2 9 3 + 0 . 0 0 2  -0 .348+0 .011  - 0 . 3 4 5 + 0 , 0 1 0  

- 0.230 -_+ 0.007 - 0.332 -+ 0.004 - 0.387 + 0.008 - 0.385 4- 0.007 

C F 0.189+0.003 0.32+0.05 0.33+0.1 -0.1___0.2 0.04__+0.19 

CB 0.202 _+_ 0.003 0.37 _+_ 0.01 0.40 _+ 0.05 0.21 _+ 0.08 0.27 _ 0.08 
i i  

model (denoted by E B and Cs). Except for C F at fl /> 1.5, the statisti- 
cal errors are rather small. Comparing the exact ground-state energy E 0 = 
-0 .386  with EF( fl = 2 ) =  --0.345 _+ 0.010 we conclude that fl = 2 corre- 
sponds to a very low temperature indeed. In this temperature region, the 
specific heat C F is very small and difficult to sample. In Fig. 1 we have 
plotted the Fourier transformed density-density correlation function 

m 2rr 2 ~ r ( M -  1) 
S(q) = ~., cos(kq)(ntnt+k)- 8 q , o N 2 / / M ,  q ---- 0, 

k = l  " ~  ' ' ' ' '  M 

(5.3) 

d 
0.5 

32 particles 
64 sites 

C~3 = 2 

--  &13=15 
e~3=1 

0 13= 0.5 

oooOO:; 

2 

t = l  
v : 2  

!!' 
o 

T~ 3 ~  2 ~  
2 q 

Fig. 1. Monte Carlo results for the Fourier-transformed density-density correlation function 
of the fermion model. The number of particles is 32, the number of sites is 64. If no error bars 
are shown, the statistical errors are too small to be drawn on this scale. 
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for different temperatures. If we compare these data with those of a system 
of 16 particles on 32 sites, we find very good agreement and therefore we 
believe it is not meaningful to study longer chains. As in Ref. 13 we observe 
that the statistical errors are larger for lower temperatures and that the 
maximum of S ( q )  varies slowly as a function of temperature. This is quite 
different for the (classical) t = 0 model, because in this model without 
hopping, S ( q )  changes by a factor of about 2 if /3 goes from 1 to 2. 
Apparently, the correlation functions clearly demonstrate the effect of 
quantum fluctuations. We also want to stress (13) the fact that the Hartree- 
Fock approximation yields qualitatively incorrect results for the correlation 
functions of this strongly interacting many-body system. 

6. C O N C L U S I O N S  

We have calculated the temperature-dependent properties of a strongly 
interacting one-dimensional fermion lattice model. Starting from the gener- 
alized Trotter formula, we derived two essentially different classical repre- 
sentations for the partition function. For short chains, exact summations 
have been performed to compare the two different approximants with 
results obtained by diagonalizing the full Hamiltonian. The best approxi- 
mant, which turned out to be the equivalent of Feynman's path-integral 
representation for the partition function, has been found to be most suited 
for numerical applications. 

A Monte Carlo scheme has been devised to simulate the fermion 
model on a computer, and results for the energy and specific heat per site 
and the density-density correlation function have been presented. Quan- 
tum effects and the strong interactions are found to have an important 
effect on the behavior of the correlation functions. 

In our opinion, the approach followed in the present paper can be used 
to study other quantum models, such as the extended Hubbard model and 
the antiferromagnetic spin-1/2 Heisenberg chain, as well. 
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APPENDIX 

For analytic calculations, it is convenient to replace A k of Eq. (3.1) by 
A k - fltx(n k + nk+ 0/2. Here,/~ denotes the chemical potential. The matrix 
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T now takes the form 

e -/~*~/2 0 0 0 

t.',,3r~rP q = eB*~/2 0 cosh(/3*t) sinh(/3*t) 0 
0 sinh(/3*t) cosh(/3*t) 0 

0 0 0 e B*(#/2-v) 

(A.1) 

A large number of configurations do not contribute to the partition 
function Zm (2) because of the relatively large number of zero elements in 
T`'~. The special case m = 1 (fl = 13") can be treated analytically by 
observing that T(nl, n2;n~,n'2)~0 if, and only if, n 1 = n~ and n 2 = n~ or 
n I v L n' 1 and n 2 ~ n~. Then, Z~ 2) can be written as 

Z} 2) = eflttM/2 E Tl(nl, n2) Tl(n2, n3)" " " TI(nM-,, riM) TI(nM, n!) 

+ e B"M/2 ~, T2(n,,n2)T2(n2,n3)...T2(nM_l, nM)T2(nM, nl) (A.2a) 
(n,} 

where 
e - f l t z / 2  cosh(fit) ] 

T,(n,,n2) = cosh(fit) e/~"/2-v)J (A.2b) 

and 

(sinh(/3t) 0 ] (A.2c) 
T2(n" n2) = 0 sinh(fit) 

Here we have used the same convention as in Eq. (3.4). The sum (A.2a) can 
be evaluated by means of the transfer-matrix technique and the result reads 

Z~ 2) = )t M + ~2 M + 2 ( e  ~/2  sinh( fit)} M (A.3a) 

where 

X,,2=�89 1/2} (A.3b) 

denote the eigenvalues of e3~/ZT I. In the thermodynamic limit M---> ~ ,  
N / M = o  (density), we have Z(2) = Xff because ~ > 1~21 and ~1 
> Isinh(t + #/2)/3[. To determine/~ = Iz(/3,0) we use 

M 
_ I 1 0 l n Z ( 2 ) _  1 0 ~'1 

P = M  E (f/i) -- M 0/3~ ~k I 0/31.~ i=1 

_ 1 {eB(~-,)  - [ ( 1 -  e#'"-V)eB(e-')) - 2eB"cosh 2/3t]X 
2~1 

•  eB(~-v))2+ 4er 2 fit] -'/2) (m.4) 
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In  general, this equat ion has to be solved numerically. In  the case of 
0 = 1/2,  a half-filled band,  one can solve Eq. (A.4) by put t ing/~ = v. In  
this case the parti t ion funct ion reads 

Z(2) = { 1 + e 3 V / 2 c o s h ( f i t ) )  M (A.5) 

In  the special case v = 2t the energy and  specific heat  per site are given by  

E(12) / M  = - t ( e  2~` - 3)(e 2~' + 3) -1 (A.6a) 

and 

Cl ( 2 ) / M  = 3(2fl t)2e2Bt(e2a~+ 3) -2 (A.6b) 

For  comparison,  the numerical  values for the energy and specific heat  per 
site for this part icular choice of t, v, and p have also been included in 
Tables I I I  and IV. 

Finally, we would like to ment ion that one can also obtain analytic 
expressions for the densi ty-densi ty  correlation functions in the special ease 
m -- 1, and one finds that  they decay exponentially with distance. 
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